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ABSTRACT

The propagation constants and the group delay time of the guided modes in the graded-index fiber with near
parabolic-index profiles can be determined in almost analytic form within the WKBJ approximation. The minimum
mode dispersion in this fiber can be attained by correcting the fourth order term to the square law profile after

the refractive-index of the cladding can be adjusted.
Introduction

The refractive~index distribution in the cross
section of a multimode optical fiber has as well as
the homogeneous cladding an important influence on the
propagation characteristics of the guided modes. For
the uncladded graded-index fiber with near parabolic-
index profiles, the optimum index profile in the sense
of the minimum mode dispersion has been evaluated the-~
oretically.1:2’3 Theoretical analyses for the cladding
effect on the mode dispersion can be done in the spe-
cial case such as parabolic-index fiber,%4,5 except for
the numerical method.6

We analyze the cladded graded-index fiber with
the refractive-index profiles of which are expressible
in terms of the truncated power series of the form :
n(r)=nj (1- (gr)2+(x(gr)4 B(gr)6)1/2, where nj,g,0,and B
are constants, using the WKBJ method. The fiber para-
meters for the minimum mode dispersion are evaluated
within the WKBJ approximation. The mode dispersion in
the near cutoff frequencies can be equalized by con-
structing the sharp index step between the core and
the cladding. The minimum mode dispersion can be at-~
tained by correcting the fourth order term to the par-
abolic-index profile with holding the cladding situa-
tion obtained above.

Formulation of problem and WKBJ solution

Let us consider the circular symmetric rod with
gradient core and uniform cladding extending to infin-
ity. We use the cylindrical coordinate system (r,8,z).
The refractive-index distribution of the fiber is de-
scribed by

n(r) _in (1-h(r)) 1/2 s

r
n =202, 2 3 a, n(=(er) - ler) 48 (gr)®

1)
where A is a positive constant and 'a' denotes a core
radius. The time dependence exp(jwt) is understood and
the modes propagate along the axial direction accord-
ing to exp(—jBn uz). It should be mentioned that we

s

< a

use the number py instead of the meridional mode number
m for the uncladded fiber: Y=m+tAu(m=0,1,2,...).

Under the well-known approximation,l>>h(r); l>>A,7
the problem for determining the guided modes can be
reduced to solving the differential equation of the
form, in the core region,

o) () +(L/D)0, (1) +IK (- (2))v2 /210, (1)=0, 1=1,2

with B =k(1—x)l/2, k=k.n,, Vv {l'“’ for i=1
n,u

01 14+n, for i=2 @
where the prime denotes the derivative with respect to
r and kg is the wavenumber in vacuum. For n+0, the_suf-
fix '1l' describes the HE-mode and '2' the EH-mode.

For n=0, we have the TE-mode or the TM-mode. The elec-
tromagnetic field for the guided modes in the core
region can be represented in terms of the functions
@i(r) and Ui(r) defined by
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U, (x)= -(1/k)[® (O+G/1)8, (0], 1=1,2. (3)

Slnce the field in the claddlng can be expressed by the
modified Bessel function K, (vr) with v=k(2A—X)1/2 and
its derivative, matching the boundary condition at r=a
leads to the characteristic equations of the form

@ (a)- (vK (va)/K (va))@.(a)=0, i=1,2. %)

Now let us express the solution of (2) in the con-
crete form. By u51ng a damped solution @ (r) and a

growing solution @ (r) with respect to r of (2), the
WKBJ solution near the core boundary can be represented
in the form

r
@i(r)=C[@i(r)—tan(JrlzP(k,r)llzdr-n/Z)Qi(r)], i=1,2

with P(k,r)=k2(x—h(r))—\)2/r2 (5)
where ry and ry are two zero points of P(k,r) and call-

ed the turning points, and C is a constant. From (4)
and (5), we obtain the resonance equations
(r
Jr 2 P(k,r)l/zdr = (u+1/2)7 ,m=0,1,2,...,i=1,2 (6)
1

where

M= (1/mytan (@] (2)+08T(2)) /(82 (a)+a8] (2))1,171,2

with Q = ~vK (va)/K, ,(va). @)

For the refractive-index distribution h(r) in (1), From
(6) we can get the propagation constants in the follow-
ing form:

. u=k[1—sg/k+a(3sz/8—v2/2)(g/k)z

+H (1762/64-58/16) 553 (30> /4-B)vs/4} (g/K) 112,
i=1,2 (8)

where s=4u+2(|vl+l)(see the Appendix). The turning
points are also expressed by the power series of g/k.
Substituting the WKBJ solution into right hand side of
(7), we have the transcendental equations with respect
to Au. Solving these numerically, from (8) we obtain
the propagation constants of the guided modes. In order
to evaluate the mode dispersion, let us calculate the
group delay time per unit length defined by

t = (nl/c)dﬁn’u/dk

where ¢ is the light velocity in vacuum. From (8) we
get the group delay time in the form

t=(n,/c) [1-{2kd (An) /dk} (g/k)

+(1/8){S(S ~8kd (Ap) /dk) (1~ 3u/2)+2uv }(g/k) +...1,
i=1, 2 (D)
It should be noted that for the uncladded fiber (Au=0)
(9) coincides with that obtained by the ray theoretical
method.“ Using (7), we can also estimate d(Au)/dk and
Ap numerically. Substituting these into (9), we can
calculate the mode dispersion of the guided modes in
the graded-index fiber with the refractive-index (1).



Numerical results and discussion

To examine the cladding effect on the mode dis-
persion, we use the parameters a, and K which are
related to each other through h(a,)=(2+k)A(k20). Then
the V parameter is defined in usual manner such that
V=ka0(2A)l/2. The a,’s denote core radius. In order to
check the validity of the WKBJ solution, we calculate
the values of Ap and compare these with those obtained
by the rigorous method.® Fig.l shows that both solu-
tions are in good agreement with each other. As shown
in Fig.2, the mode dispersion at the near cutoff fre-
quencies can be equalized by constructing the sharp
index step between the core and the cladding. Fig.3
shows that we can specify the parameter ¢ for minimiz-
ing the mode dispersion, after the sharp index step
can be adjusted. In fact, the fourth order correction
to the parabolic-index profile leads to the minimum
mode dispersion for the parameter o with 0.65<0<0.75
under k=2 (see Fig.4). From Fig.5, we can see that the
relative group delay time for o=0.70 is about three
times smaller than for a=0, that is, the parabolic-
index fiber.

Conclusion

The mode dispersion of the guided modes in the
cladded optical fiber with near parabolic~index core
can be evaluated by the WKBJ method. It turns out that
the considerable improvement can be attained by adding
the fourth order correction term to the parabolic-
index fiber.
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Fig.l.

The values of ~Au for the guided modes
in the parabolic-index fiber. The dashed
curves indicate the first—order asympto-
tic solutions and the circles show the

exact ones.? o = B= 0,A = 0.01,k = O.
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Fig.2. The cladding effects for group delay

time ct. B = 0, A = 0.01.
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Fig.3. The relative delay time considered clad-
ding effect versus fourth order correc-—
tion. V=15.0, B= 0, A=0.01.
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The optimum parameter o for the minimum
relative delay time. B = 0,A = 0.01,
K =2,

Fig.4.
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The relative delay time for 0=0.70 and
a=0 versus 4m+2(|v|+1). The dashed curves
show the values for the uncladded fibers.
V=35.0,8 = 0,k = 2,

Appendix

Making the change of variable (gr)2=R and substi-
tuting h(r) in (1) into (6), we have

Pk, r) =k (§-R) (R-Y) [1-0.(§+y)+B( (3+7) 2=67)
~(o=B(SH)IRHBRP/R, y=(gr )7, 8=(er 2. (a.1)
In the course of the derivation of (A.1), we also have

B, kL1 ()4 ((841) 2-87)=B(64+) ((5m) 2-26y) 1172
s (A.2)
and
V2 (8/1) 2=6y [1-a(847)+B((S+y) 2-67) 1. (4.3)
Expanding the quantity in the brackets of (A.l) into
Taylor series about R=0, the left hand side of (6) can
be evaluated in closed form. Then from (6), we have

(1+1/2) (g/k)=(1/2) [1~a(S+y) /2~ (02 /8-B/2) (5+v) 248v/2]
x((8+7) 12-(87) 5y =(1/2) [0/ 16+ (502 /128
-38/32) (8+y) 1 ((8+y) 2-467) . (A.4)

Considering 1>>g/k, from (A.3) and (A.4) we have 1>>¢,y.
By using (A.3) and (A.4), §+y and (Gy)l can be deter-
mined in the power series form with respect to g/k.
Substituting these into (A.2), we obtain (8).



