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ABSTRACT—. .—.—

The propagation constants and the group delay time of the guided modes in the graded-index fiber with near
parabolic-index profiles can be determined in almost analytic form within the WKBJ approximation. The minimum

mode dispersion in this fiber can be attained by correcting the fourth order term to the sauare law urofile after

the refractive-index of the cladding can be adj&ted.

Introduct~

The refractive-index distribution in the cross

section of a multimode optical fiber has aa well as
the homogeneous cladding an important influence on the
propagation characteristics of the guided modes. For
the uncladded graded-index fiber with near parabolic–
index profilea, the optimum index profile in the aenae
of the minimum mode dispersion has been evaluated the-
oretically.1,2~3 Theoretical analyaes for the cladding
effect on the mode dispersion can be done in the spe-

cial case such as parabolic-index fiber,4,5 except for
the numerical method.6

We analyze the cladded graded-index fiber with

the refractive-index profiles of which are expressible
in terms of the truncated power series of the form :

n(r)=nl(l–(gr)2ti(gr)4-f3 (gr)6)l/2, where nl,g,a,and ~
are constants, using the WKBJ method. The fiber para-
meters for the minimum mode diapersion are evaluated
within the WKBJ approximation. The mode dispersion in

the near cutoff frequencies can be equalized by con-
structing the sharp index step between the core and
the cladding. The minimum mode dispersion can be at-
tained by correcting the fourth order term to the par-
abolic–index profile with holding the cladding situa-

tion obtained above.

Formulation of problem and W’KBJ solution

Let us consider the circular symmetric rod with
gradient core and uniform cladding extending to infin-
ity. We use the cylindrical coordinate system (r,(3,z).
The refractive-index distribution of the fiber is de-
scribed by

I
1/2

n(r) = nl(l-h(r)) ,r<a

nl(l-2A)1/2, r z a, h(r) =(gr)2-a(gr)4+~ (gr)
6

(1)
where A is a positive constant and ‘a’ denotea a core
radius. The time dependence exp(jut) is understood and

the modes propagate along the axial direction accord-
ing to exp(-j~n Hz). It should be mentioned that we

,
use the number p instead of the meridional mode number
m for the uncladded fiber: U=m+Ap(m=0,1,2, ...).

Under the well-known approximation,l>>h(r); 1>>A,7
the problem for determining the guided modes can be
reduced to solving the differential equation of the
form, in the core region,

‘$~(r)+(l/r)O~(r)+[k2(X-h(r) )-V2/r2]C’i(r)=0, i=l,2

with f!n “=k(l-#2, {:;:, for i=l
‘=konl’ v = . for i=2

(2)
,.

where the prime denotes the derivative with respect to
r and k. is the wavenumber in vacuum. For n~O, the auf–

fix ‘1’ describes the HE-mode and ‘2’ the EH–mode.7
For n=O, we have the TE-mode or the TM-mode. The elec-
tromagnetic field for the guided modes in the core
region can be represented in terms of the functions
@i(r) and Ui(r) defined by

Ui(r)=-(l/k)[Q~(r)+(v/r)Oi(r) ], i=l,2. (3)

Since the field in the cladding can be expressed by the
modified Bessel function ~(vr) with v=k(2A-X)l/2 and

its derivative, matching the boundary condition at r=a
leada to the characteristic equations of the form

O~(a)-(vK~v!(va)/Klvl(va))Oi(a)=O, i=l,2. (4)
,.

Now let us express the solution of (2) in the con-
crete form. By using a damped solution O;(r) and a

growing solution O;(r) with respect to r of (2), the

WKBJ solution near the core boundary can be represented
in the form

r. r

@i(r)=C[@~(r)-tan(
J

2
F’(k,r)112 dr-m/2)@~(r)], i=l,2

‘1

with P(k,r)=k2(X-h(r))–v2/r2 (5)
where rl and r2 are two zero points of P(k,r) and call-

ed the turning points, and C is a constant. From (4)

and (5), we obtain the resonance equations

~r~2 P(k,r)l/2 dr = (LI+l/2)IT ,111=0,1,2,

where

Av=(l/m)tan-l[(Q~’ (a)+Q@~(a))/(@f’(a)”

with Q = –vK~vl(va) /Klvl(va).

For the refractive-index distribution h(

. . . i=l,2 (6)

Q@~(a))],i=l,2

(7)

) in (l), From
(6) we can get the propagation constants in the follow-
ing form:

6_ .=k[l-sglk*(3a218-v2/2)(glk)2
Il,p

+{(17cx2/64-56/16)s3-3(3a2/4-f3)v2s/4} (g/k)311’2,
i=l,2 (8)

where s=4p+2(lVl+l) (see the Appendix). The turning

points are also expressed by the power series of g/k.

Substituting the WKBJ solution into right hand side of

(7), we have the transcendental equations with respect
to Ap. Solving these numerically, from (8) we obtain
the propagation constants of the guided modes. In order
to evaluate the mode dispersion, let us calculate the

group delay time per unit length defined by

t = (nl/c)df3 n ~ldk
,

where c ia the light velocity in vacuum. From (8) we
get the group delay time in the form

t=(nl/c)[l-{2kd(A~) /dk}(g/k)

+(1/8){s(s-8kd(Ap)/dk) (1–3ct/2)+2av2}(g/k)2+. ..1,
i=l,2 (9)

It should be noted that for the uncladded fiber (LLI=O)

(9) coincides with that obtained by the ray theoretical
method.2 Using (7), we can also estimate d(Ap)/dk and

AU numerically. Substituting these into (9), we can
calculate the mode diapersion of the guided modes in
the graded-index fiber with the refractive-index (l).
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Numerical results and discussion____________ . . . . . . . ...— . ..- .- . ..——.—.—

To examine the cladding effect on the mode dis-

persion, we use the parameters aK and K which are

related to each other through h(aK)=(2+K)A(KkO). Then

the V parameter is defined in usual manner such that

V=kaO(2A) 1/2. The aK’ s denote core radius. In order to

check the validity of the WKBJ solution, we calculate
the values of AU and compare these with those obtained
by the rigorous method.4 Fig.1 shows that both solu-
tions are in good agreement with each other. As shown
in Fig.2, the mode dispersion at the near cutoff fre-

quencies can be equalized by constructing the sharp
index step between the core and the cladding. Fig.3

shows that we can specify the parameter a for minimiz-

ing the mode dispersion, after the sharp index step

can be adjusted. In fact, the fourth order correction

to the parabolic-index profile leads to the minimum
mode dispersion for the parameter a with 0.65<a<0.75
under K=2 (see Fig.4). From Fig.5, we can see that the

relative group delay time for cI=O .70 is about three
times smaller than for a=O, that is, the parabolic-
index fiber.

@Z@!4? ?2G.

The mode dispersion of the guided modes in the

cladded optical fiber with near parabolic-index core

can be evaluated by the WKBJ method. It turns out that

the considerable improvement can be attained by adding
the fourth order correction term to the parabolic-
index fiber.
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Fig.1.
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The values of -Ap for the guided modes
in the parabolic–index fiber. The dashed

curves indicate the first-order asympto-
tic solutions and the circles show the

exact ones . 4 a = f3= O,L = 0.Cll,K = O.
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Fig.2. The cladding effects for group delay
time ct. (3=0, A=O.01.
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Fig.3. The relative delay time considered clad-
ding effect versus fourth order correc-

tion;. V=15.0, ~= I), A=o.oIO
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Fig.4. The optimum parameter o. for the minimum
relative delay time. B = O,A = 0.01,
K=2.
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Fig.5. The relative delay time for cI=O.70 and
a.O versus 4m+2(lvl+l) . The daahed curves

ahow the values for the uncladded fibers.
V=35.O,@ = I),K = 2.

Appendix

Making the change of variable (gr)2=R and substi-
tuting h(r) in (1) into (6), we have

P(k,r)=k2(6-R) (R-Y) [l-ct(&y)+6((&ry) 2-6y)

-(C@(6+Y))R+L3R21/R, y=(grl)z, &=(gr2)2. (Al)

In the course of the derivation of (Al), we also have

Bn ~=k[l-(d+y)ti((6+y)2-6y)-6(&y) ((&y)2-2&y)]1/2
,

and
(A.2)

v2(g/k)2=dy[l-a(8~)+6( (&Ey)2-6y)]. (A.3)
Expanding the quantity in the brackets of (Al) into
Taylor series about R=O, the left hand side of (6) can
be evaluated in closed form. Then from (6), we have

(lJ+l/2) (g/k) =(l/2) [1-u(6+Y) /2-(a2/8-f3/2) (d+y) 2+&3y/2]

x((&y)/2-(6y)1’2 )-(1/2)[cx/16+(5a2/128

-3~/32)(&y)]((&-y)2-46y) . (A.4)

Considering l>>g/k, from (A.3) and (A.4) we have l>>6,y.

By using (A,3) and (A.4), d+y and (&y)l/2 can be deter-

mined in the power series form with respect to g/k.
Substituting these into (A.2), we obtain (8).


